Chapter 1

INTRODUCTION

1.1 WHAT IS AN ALGORITHM?

The word algorithm comes from the name of a Persian author, Abu Ja'far
Mohammed ibn Musa al Khowarizmi (c. 825 A.D.), who wrote a textbook
on mathematics. This word has taken on a special significance in computer
science, where “algorithm” has come to refer to a method that can be used
by a computer for the solution of a problem. This is what makes algorithm
different from words such as process, technique, or method.

Definition 1.1 [Algorithm]: An algorithm is a finite set of instructions that,
if followed, accomplishes a particular task. In addition, all algorithms must
satisfy the following criteria:

Input. Zero or more quantities are externally supplied.
Output. At least one quantity is produced.

Definiteness. Each instruction is clear and unambiguous.

= W =

Finiteness. If we trace out the instructions of an algorithm, then for
all cases, the algorithm terminates after a finite number of steps.

5. Effectiveness. Every instruction must be very basic so that it can be
carried out, in principle, by a person using only pencil and paper. It
is not enough that each operation be definite as in criterion 3; it also
must be feasible. O

An algorithm is composed of a finite set of steps, each of which may
require one or more operations. The possibility of a computer carrying out
these operations necessitates that certain constraints be placed on the type
of operations an algorithm can include.

1

2 CHAPTER 1. INTRODUCTION

Criteria 1 and 2 require that an algorithm produce one or more outputs
and have zero or more nputs that are externally supplied. According to cri-
terion 3, each operation must be definite, meaning that it must be perfectly
clear what should be done. Directions such as “add 6 or 7 to ” or “compute
5/0” are not permitted because it is not clear which of the two possibilities
should be done or what the result is.

The fourth criterion for algorithms we assume in this book is that they
terminate after a finite number of operations. A related consideration is
that the time for termination should be reasonably short. For example, an
algorithm could be devised that decides whether any given position in the
game of chess is a winning position. The algorithm works by examining all
possible moves and countermoves that could be made from the starting po-
sition. The difficulty with this algorithm is that even using the most modern
computers, it may take billions of years to make the decision. We must be
very concerned with analyzing the efficiency of each of our algorithms.

Criterion 5 requires that each operation be effective; each step must be
such that it can, at least in principle, be done by a person using pencil and
paper in a finite amount of time. Performing arithmetic on integers is an
example of an effective operation, but arithmetic with real numbers is not,
since some values may be expressible only by infinitely long decimal expan-
sion. Adding two such numbers would violate the effectiveness property.

Algorithms that are definite and effective are also called computational
procedures. One important example of computational procedures is the op-
erating system of a digital computer. This procedure is designed to control
the execution of jobs, in such a way that when no jobs are available, it
does not terminate but continues in a waiting state until a new job is en-
tered. Though computational procedures include important examples such
as this one, we restrict our study to computational procedures that always
terminate.

To help us achieve the criterion of definiteness, algorithms are written in a
programming language. Such languages are designed so that each legitimate
sentence has a unique meaning. A program is the expression of an algorithm
in a programming language. Sometimes words such as procedure, function,
and subroutine are used synonymously for program. Most readers of this
book have probably already programmed and run some algorithms on a
computer. This is desirable because before you study a concept in general,
it helps if you had some practical experience with it. Perhaps you had some
difficulty getting started in formulating an initial solution to a problem, or
perhaps you were unable to decide which of two algorithms was better. The
goal of this book is to teach you how to make these decisions.

The study of algorithms includes many important and active areas of
research. There are four distinct areas of study one can identify:

1. How to deuvise algorithms — Creating an algorithm is an art which
may never be fully automated. A major goal of this book is to study vari-

1.2. ALGORITHM SPECIFICATION)

1.2 ALGORITHM SPECIFICATION

1.2.1 Pseudocode Conventions

In computational theory, we distinguish between an algorithm and a pro-
gram. The latter does not have to satisfy the finiteness condition. For ex-
ample, we can think of an operating system that continues in a “wait” loop
until more jobs are entered. Such a program does not terminate unless the
system crashes. Since our programs always terminate, we use “algorithm”
and “program” interchangeably in this text.

We can describe an algorithm in many ways. We can use a natural
language like English, although if we select this option, we must make sure
that the resulting instructions are definite. Graphic representations called
flowcharts are another possibility, but they work well only if the algorithm
is small and simple. In this text we present most of our algorithms using a
pseudocode that resembles C and Pascal.

1. Comments begin with // and continue until the end of line.

2. Blocks are indicated with matching braces: { and }. A compound
statement (i.e., a collection of simple statements) can be represented
as a block. The body of a procedure also forms a block. Statements
are delimited by ;.

3. An identifier begins with a letter. The data types of variables are
not explicitly declared. The types will be clear from the context.
Whether a variable is global or local to a procedure will also be evident
from the context. We assume simple data types such as integer, float,
char, boolean, and so on. Compound data types can be formed with
records. Here is an example:

node = record
{ datatype_1 data.1;

datatype.n data_n;
node «link;

}

In this example, ltnk is a pointer to the record type node. Individual
data items of a record can be accessed with — and period. For instance
if p points to a record of type node, p — data_1 stands for the value of
the first field in the record. On the other hand, if q is a record of type
node, q.data_1 will denote its first field.

CHAPTER 1. INTRODUCTION

. Assignment of values to variables is done using the assignment state-
ment

(variable) := (expression);

. There are two boolean values true and false. In order to produce
these values, the logical operators and, or, and not and the relational
operators <, <,=,#,>, and > are provided.

. Elements of multidimensional arrays are accessed using [and |. For
example, if A is a two dimensional array, the (i, 7)th element of the
array is denoted as A[¢,j]. Array indices start at zero.

. The following looping statements are employed: for, while, and repeat-
until. The while loop takes the following form:

while (condition) do

(statement 1)

{(statement n)

}

As long as (condition) is true, the statements get executed. When
(condition) becomes false, the loop is exited. The value of {condition)
is evaluated at the top of the loop.

The general form of a for loop is

for variable .= valuel to value2 step step do

{

{statement 1)

(statermment n)

}

Here valuel, value2, and step are arithmetic expressions. A variable
of type integer or real or a numerical constant is a simple form of an
arithmetic expression. The clause “step step” is optional and taken
as +1 if it does not occur. step could either be positive or negative.
variable is tested for termination at the start of each iteration. The
for loop can be implemented as a while loop as follows:

1.2. ALGORITHM SPECIFICATION 7

variable := valuel;

fin = value2;

tner = step;

while ((variable — fin) x step < 0) do

{

<Stat(i'rn,ent 1)

(statement n)
vartable := variable + incr;

}

A repeat-until statement is constructed as follows:

repeat
(statement 1)

(statement n)
until (condition)

The statements are executed as long as (condition) is false. The value
of (condition) is computed after executing the statements.

The instruction break; can be used within any of the above looping
instructions to force exit. In case of nested loops, break; results in
the exit of the innermost loop that it is a part of. A return statement
within any of the above also will result in exiting the loops. A return
statement results in the exit of the function itself.

8. A conditional statement has the following forms:

if (condition) then (statement)
if (condition) then (statement 1) else (statement 2)

Here (condition) is a boolean expression and (statement), (statement 1),
and (statement 2) are arbitrary statements (simple or compound).

We also employ the following case statement:

case

{

:(condition 1): (statement 1)

H{condition n): (statement n)
:else: (statement n+ 1)

8 CHAPTER 1. INTRODUCTION

Here (statement 1), (statement 2), etc. could be either simple state-
ments or compound statements. A case statement is interpreted as
follows. If (condition 1) is true, (statement 1) gets executed and
the case statement is exited. If (statement 1) is false, (condition 2)
is evaluated. If (condition 2) is true, (statement 2) gets executed
and the case statement exited, and so on. If none of the conditions
(condition 1), ..., (condition n) are true, {(statement n+1) is executed
and the case statement is exited. The else clause is optional.

9. Input and output are done using the instructions read and write. No
format is used to specify the size of input or output quantities.

10. There is only one type of procedure: Algorithm. An algorithm con-
sists of a heading and a body. The heading takes the form

Algorithm Name ({(parameter list))

where Name is the name of the procedure and ((parameter list)) is
a listing of the procedure parameters. The body has one or more
(simple or compound) statements enclosed within braces { and }. An
algorithm may or may not return any values. Simple variables to
procedures are passed by value. Arrays and records are passed by
reference. An array name or a record name is treated as a pointer to
the respective data type.

Asg an example, the following algorithm finds and returns the maximum
of n given numbers:

Algorithm Max(A, n)
// A is an array of size n.

Result .= A[l];
for ¢+ := 2 to n do

if A[i] > Result then Result := A[il;
return Result;

o BN Sle R TSNRIUE

}

In this algorithm (named Max), A and n are procedure parameters.
Result and ¢ are local variables.

Next we present two examples to illustrate the process of translating a
problem into an algorithm.

Example 1.1 [Selection sort] Suppose we must devise an algorithm that
sorts a collection of 7 > 1 elements of arbitrary type. A simple solution is
given by the following

